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@ Introduced by Lenz (1920), solved by Ising in 1d (1924-1925)

@ Generalized to higher dimensions by various authors, while
most of the interesting rigorous results proven in 2d

@ Some remarkable properties in 2d: exact solution and phase
transition (Onsager, 1944), Conformal Field Theory (Belavin,
Polyakov, Zamolodchikov, 1984 —), conformally invariant
scaling limits of interfaces (Smirnov et al, 2010 —)
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Ising model on a graph

e Let G be a finite graph, V/(G) its vertex set and E(G) its
edge set.

@ A spin configuration o on G is formally defined as
o= (ov)vev(c) € {-1, +13v(©).
@ Assign a Boltzmann measure on spin configurations by

Pi(o)oc [ P
{v,w}€E(G)

where (3 is called the inverse temperature.

e Partition function Zg(8) = >, I1{v.wice(q) efovow
@ The Boltzmann distribution can be reformulated as
]P)lé(o.) o p#HAvwIEE(G) : ov=0u}

@ In particular, 5 >0 < v > 1. In this regime, the model is
called ferromagnetic, on which we concentrate in the sequel.
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Ising model on random (" dynamical”) lattices

@ Dates back to the work of Kazakov (1986) and Boulatov -
Kazakov (1987)

@ Original physics motivations: " Liouville Quantum Gravity
coupled with matter” (Polyakov 1981); quantum vs Euclidean
critical exponents via the KPZ-relation
(Knizhnik-Polyakov-Zamolodchikov 1988)

@ The above works already revealed a critical behavior different
from the pure gravity universality class

@ In the language of modern mathematics:
random planar maps coupled with an (annealed) Ising model

@ We want to find a critical behavior of the model which differs
from the "universality class of the Brownian map”
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Ising-triangulations

@ Add to each internal face (or vertex) a spin, either + or —.

@ Dobrushin boundary conditions: the spins outside the

boundary (resp. on the boundary) are fixed by a sequence of
the form +P—9 counterclockwise from the root.
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@ From now on, we consider the model when the spins are on
the faces of the triangulation.

o Let F(t) be the set of internal faces of t.
@ Denote a spin configuration by o.

@ An edge is called monochromatic if it separates two faces with
the same spin. Let £(t,0) be the set of monochromatic edges
in (t,0).

X

root corner

color code:
Il =spin+
=spin -
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where

@ BT, q is the set of triangulations of the (p + g)-gon together
with an Ising-configuration on interior faces and a Dobrushin
boundary condition +P—9 .

Generating function

Z(u,v; t,v) = Z zp.q(t,v) uPva
P,q=>0
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For every v > 1, the GF Z(u, v; t,v) is an algebraic function
having a rational parametrization

2 =T(S,v), tu=0HSv), tv=U0KSw)

A

Z(u,v;t,v)=2Z(H,K;S,v),

where T, U and Z are rational functions with explicit expressions.

This theorem indicates that the model is "exactly solvable”:
various observables (eg. the free energy) can be explicitly
computed at least in some scaling limits from the expression of the
generating function!
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Proof ingredients: peeling and functional equation for Z
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Summing over p, g, we obtain a linear equation for Z(u, v), and
interchanging the roles of p and g gives a linear system

A, Z(u,v
|:AVZEV, uﬂ (2)
= |:V 1:| |:U +t (A%Z(U) + (AZ()(U) + Zl(V)) AUZ(u) — AZO(U)Zl(V))
1 v] v+t (A2Z(v) + (AZ(v) + Z1(u) A Z(v) — AZy(v)Zy(u)) |
where
Zi(u) == WMZ(u,v),  DuZ(u,v) = M
azy() = 2L pz gy, - A =20 v ()

and so on.



It turns out that Z; can be eliminated, and thus we obtain a
rational expression
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where P is an explicit polynomial and zx := z .
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Z(u,v) =

where R;, R» are explicit polynomials.

@ Besides, we obtain a functional equation
P(ZO(U), u,zi, z3; t, V) =0, (4)

where P is an explicit polynomial and zx := z .

@ Luckily, we can obtain rational parametrizations for t, z; and
z3 by simple duality with the model in [Bernardi,
Bousquet-Melou [1]]. This can also be done directly from (4)
(more messy).

e Applying (computer) algebra we find an explicit RP for u and
Zy(u) for any given v > 1.
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which

c(W)r(v)""n32 ifv # v,
c(v)tz"n~7/3 ifv=u,
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where ve = 1+ 2v/7 and t. = r(ve) = 2BV —00131....

v

@ Relying on the above result, we identify a critical line (v, 7(v))
for v > 1, and a unique critical point (v, tc) on the critical
line at which a phase transition occurs.

o t.(v) :=7(v) is simply the radius of convergence of z o(t, )
for a fixed v > 1.



Theorem [Chen, T., 2020]

Forv > 1,
ap(v —q —(a

Zpq(tc(v),v) ~ I'(p—(a())) uc(v)~9 g~ (@o+1) as q — oo;
b(v)

(v)Pp~(@F) a5 p - o0;

aP(V) ~ r(_al) Uc

Zpq(tc(v),v) ~ muc(y)—(i)-ﬁ-q)p—(az—ﬂ) as p,q — 0o

while q/p € [Amin, Amax] where 0 < Amin < Amax < 00

The perimeter exponents are determined by the following table:

ve | (1ve) | {ve) | (ve,0)
ap | 3/2 | 4/3 3/2
ar | -1 | 1/3| 3/2
an 1/2 | 5/3 3
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Proof ideas

We want to understand the singularity structure of Z(u, v;v),
which boils down to understanding the one of the RP
(Z(H,K;R),U(H;R), U(K; R)) with v = D(R). This involves:

e Identifying the singularity uc(v) by looking at the critical
points of U, and showing that U defines a conformal bijection
between the domains of convergences of Z and Z around the
origin.

@ Showing that uc(v) is the unique dominant singularity of Z,
which in particular involves showing that Z has only one pole
which is mapped to D(0, uc(v))? under the aforementioned
conformal bijection.

@ Deducing that Z is holomorphic in a product of A-domains,
which roughly means that it is amenable to transfer theorems
of analytic combinatorics (see the book of Flajolet and
Sedgewick).



@ The previous results allow us to write local expansions of
Z(u,v;v) around u, v = uc(v), for which we apply the Cauchy
integral formula to find the asymptotics of z, (tc(v), V).

@ The local expansions depend on the temperature regime,

hence the different critical exponents and a (combinatorial)
phase transition.
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Boltzmann distribution

Definition
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Boltzmann distribution

Definition

The Boltzmann Ising-triangulation
of the (p, g)-gon is a random
variable having the law
C(V)Vol(t)yg(t,a)

Zpq(te(v),v)

v t
]P’Mq(t, o) =

(t,0) € BTp,q.

)

In the previous example,
|F(t)| =19,
|E(t,0)| = 18 and

tC(V)lgllls

Poalto) = 2 @) 0)



A glimpse of random geometry; a phase transition

Figure: The local limits (p, ¢ — o0) in the high temperature and the low
temperature regimes.

(to)~P,

o

Figure: The two local limits at the critical temperature.



Interfaces at the critical temperature

) ®) ot

Figure: The unique infinite interface when the spins are on vertices.



A closely related work

o Albenque, Ménard and Schaeffer [2] considered the set of
triangulations of the sphere of size n decorated with an Ising
model on the vertices.

o After generalizing [1], they show the local convergence of such
triangulations when n — oc.

@ In a recent preprint [3], Albenque and Ménard apply rational
parametrizations (including a part of our method) to study
the critical perimeter and volume exponents of the spin cluster
of the origin.



Works in progress and further directions

o Near-critical regime (|v — vc| o p~#)

@ Universality (more general lattices)

@ More general boundary conditions, yielding to recursion on the
generating functions

e Many probabilistic aspects (scaling limits, relations to Liouville
Quantum Gravity and Schramm-Loewner Evolutions,...)

@ Applications and generalizations of the methods to other

statistical mechanics models
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Merci beaucoup!



