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Partition identities

Integer partitions and compositions

Definition

A partition λ of a positive integer n is a finite non-increasing sequence of
positive integers (λ1, . . . , λm) such that λ1 + · · ·+ λm = n. The integers
λ1, . . . , λm are called the parts of the partition λ.

Example

There are 5 partitions of 4: 4, (3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1).

Definition

A composition c of a positive integer n is a finite sequence (with no
restriction on the order) of positive integers (c1, . . . , cm) such that
c1 + · · ·+ cm = n.

Example

(1, 2, 1) is a composition of 4 but not a partition.
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Partition identities

Young diagrams

Definition

Let λ = (λ1, . . . , λm) be a partition. The Young diagram of λ is a finite
collection of boxes arranged in left-justified rows, with λi boxes in the i-th
row for all 1 ≤ i ≤ m.

Example

λ = (7, 7, 5, 2, 2, 1) is a partition of 24 with Young diagram
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Partition identities

Generating functions

Notation : (a; q)n =
∏n−1

k=0(1− aqk), n ∈ N ∪ {∞}.

Let Q(n, k) be the number of partitions of n into k distinct parts. Then

1 +
∑
n≥1

∑
k≥1

Q(n, k)zkqn = (1 + zq)(1 + zq2)(1 + zq3)(1 + zq4) · · ·

= (−zq; q)∞.

Let p(n, k) be the number of partitions of n into k parts. Then

1 +
∑
n≥1

∑
k≥1

p(n, k)zkqn =
∏
n≥1

(
1 + zqn + z2q2n + · · ·

)
=

1

(zq; q)∞
.
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Partition identities

Generating functions

More generally:

The generating function for partitions into distinct parts congruent to
k mod N is

(−zqk ; qN)∞.

The generating function for partitions into parts congruent to k
mod N is

1

(zqk ; qN)∞
.
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Partition identities

q-binomial coefficients

Definition

For two integers n and m, the q-binomial coefficient
[m+n

m

]
q

is defined as

[
m + n

m

]
q

:=


(q; q)m+n

(q; q)m(q; q)n
for m, n ≥ 0,

0 otherwise.

It is the generating function for partitions whose Young diagram fits inside
an n ×m rectangle.

Properties[m+n
m

]
q

=
[m+n

n

]
q

limn→∞
[m+n

m

]
q

= 1/(q; q)m

Jehanne Dousse (CNRS) Cylindric partitions Journées Combiné 6 / 36



Partition identities

q-binomial coefficients

Definition

For two integers n and m, the q-binomial coefficient
[m+n

m

]
q

is defined as

[
m + n

m

]
q

:=


(q; q)m+n

(q; q)m(q; q)n
for m, n ≥ 0,

0 otherwise.

It is the generating function for partitions whose Young diagram fits inside
an n ×m rectangle.

Properties[m+n
m

]
q

=
[m+n

n

]
q

limn→∞
[m+n

m

]
q

= 1/(q; q)m

Jehanne Dousse (CNRS) Cylindric partitions Journées Combiné 6 / 36



Partition identities

The first Rogers–Ramanujan identity

Theorem (Rogers 1894, Rogers–Ramanujan 1919)
∞∑
n=0

qn
2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞
,

Theorem (Partition version)

For every positive integer n, the number of partitions of n such that the
difference between two consecutive parts is at least 2 is equal to the
number of partitions of n into parts congruent to 1 or 4 modulo 5.
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Partition identities

Some definitions on Lie algebras

Definition

A Lie algebra g is a vector space together with a bilinear map
[·, ·] : g× g→ g, called the Lie bracket, satisfying:

alternativity : for all x ∈ g, [x , x ] = 0,

the Jacobi identity: for all x , y , z ∈ g,
[x , [y , z ]] + [z , [x , y ]] + [y , [z , x ]] = 0.

Example

The special linear Lie algebra of order n, denoted An−1 or sln(C), is the
Lie algebra of n × n matrices with trace zero and with the Lie bracket
[X ,Y ] = XY − YX .

Definition

A representation (or module) of g is a vector space V together with a
linear map ρ : g→ gl(V ), such that ρ([X ,Y ]) = ρ(X )ρ(Y )− ρ(Y )ρ(X ).
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Partition identities

Some definitions on Lie algebras
Let g be a finite dimensional simple Lie algebra with Cartan subalgebra h.
The corresponding (derived) affine Lie algebra ĝ is constructed as

ĝ := g⊗ C[t, t−1]⊕ Cc ,

where C[t, t−1] is the complex vector space of Laurent polynomials in the
indeterminate t, and Cc is ĝ’s center (one-dimensional).

If V is an irreducible highest weight module of ĝ, the central element c
acts on V by multiplication by a scalar k , which is called the level of V .
The character ch(V ) of V =

⊕
µ Vµ is defined as

ch(V ) =
∑
µ

dim(Vµ)eµ,

where the sum is over the weights µ of V ,
Vµ := {v ∈ V : ∀H ∈ h, H · v = µ(H)v} is a weight space,
and eµ is a formal exponential satisfying eµeµ

′
= eµ+µ′ .
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Partition identities

Representation theoretic interpretation

Lepowsky and Wilson 1984: representation theoretic interpretation

1

(q; q2)∞

∞∑
n=0

qn
2

(q; q)n
=

1

(q; q2)∞

1

(q; q5)∞(q4; q5)∞

Obtained by giving two different formulations for the principal
specialisation

e−α0 7→ q, e−α1 7→ q

of e−Λch(L(Λ)) where L(Λ) is an irreducible highest weight A
(1)
1 -module of

level 3.

RHS: principal specialisation of the Weyl-Kac character formula

LHS: comes from the construction of a basis of L(Λ) using vertex operators
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1

(q; q2)∞

∞∑
n=0

qn
2

(q; q)n
=

1

(q; q2)∞

1

(q; q5)∞(q4; q5)∞

LHS: comes from the construction of a basis of L(Λ) using vertex
operators.
Very rough idea:

Start with a spanning set of L(Λ): here, monomials of the form
Z f1

1 . . .Z fs
s for s, f1, . . . , fs ∈ N≥0.

Using Lie theory, reduce this spanning set: here, it allows one to
remove all monomials containing Z 2

j or ZjZj+1.

Show that the obtained set is a basis of the representation (very
difficult).
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Partition identities

The Andrews–Gordon identities

Let r ≥ 2 and 1 ≤ i ≤ r be two integers. We have

∑
n1≥···≥nr−1≥0

qn
2
1+···+n2

r−1+ni+···+nr−1

(q; q)n1

[
n1

n1 − n2

]
q

· · ·
[

nr−2

nr−2 − nr−1

]
q

=
(q2r+1, qi , q2r−i+1; q2r+1)∞

(q; q)∞
.

A1

A2

A′
3

A′
4

µ1

µ2

µ3

µ4

n1

n2

n3

n4

Corresponds to characters of higher

level modules of A
(1)
1

(Meurman–Primc 1987)
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Partition identities

Interactions between combinatorics and representation
theory

From the combinatorial point of view: representation theory is a great
source for conjecturing new partition identities:

Capparelli 1993: level 3 standard modules of A
(2)
2

Nandi 2014: level 4 standard modules of A
(2)
2

Siladić 2002: twisted level 1 modules of A
(2)
2

Primc 1999: A
(1)
2 and A

(1)
1 crystals

Primc and Šikić 2016: level k standard modules of C
(1)
n

From the representation theoretic point of view: combinatorics can
help finding expressions of the character ch(V ) =

∑
µ dim(Vµ)eµ as a

series with obviously positive coefficients.
Andrews–Schilling–Warnaar 1999, Bartlett–Warnaar 2015, D.–Konan 2020, ...

Cylindric partitions can be used to do so (last section).
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Cylindric partitions

Plane partitions

Definition

A plane partition is a vector partition Λ = (λ(1), λ(2), . . . , λ(k)), where

each λ(i) = (λ
(i)
1 , λ

(i)
2 , . . . , λ

(i)
si ) is a partition, such that for all i and j ,

λ
(i)
j ≥ λ

(i+1)
j .

Example

((4, 4, 3, 2, 1), (4, 3, 1, 1), (3, 2, 1), (1))

4 4 3 2 1

4 3 1 1

3 2 1

1

©Wikipedia
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Cylindric partitions

Plane partitions

Definition

A plane partition is a vector partition Λ = (λ(1), λ(2), . . . , λ(k)), where

each λ(i) = (λ
(i)
1 , λ

(i)
2 , . . . , λ

(i)
si ) is a partition, such that for all i and j ,

λ
(i)
j ≥ λ

(i+1)
j .

The sum of Λ is the sum of all the parts in the partitions λ(1), . . . , λ(k).
Let PL(n) denote the number of plane partitions with sum n.

Theorem (MacMahon 1916)

The generating function for plane partitions is∑
n≥0

PL(n)qn =
∏
i≥1

1

(1− qi )i
·
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Cylindric partitions

Cylindric partitions

Definition (Gessel–Krattenthaler 1997)

Let c = (c1, . . . , ck) be a composition.
A cylindric partition with profile c is a vector partition

Λ = (λ(1), λ(2), . . . , λ(k)), where each λ(i) = (λ
(i)
1 , λ

(i)
2 , . . . , λ

(i)
si ) is a

partition, such that for all i and j ,

λ
(i)
j ≥ λ

(i+1)
j+ci+1

and λ
(k)
j ≥ λ(1)

j+c1
.

The sum |Λ| of the cylindric partition Λ is the sum of all the parts in the
partitions λ(1), . . . , λ(k).
Its largest part max(Λ) is the largest part among all the partitions
λ(1), . . . , λ(k).
Let Pc denote the set of cylindric partitions with profile c .
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Cylindric partitions

Cylindric partitions: example
Consider the composition c = (3, 1, 1).
A cylindric partition with profile c is a vector partition

Λ = (λ(1), λ(2), λ(3)), where each λ(i) = (λ
(i)
1 , λ

(i)
2 , . . . , λ

(i)
si ) is a partition,

such that for all j ,

λ
(1)
j ≥ λ

(2)
j+1, λ

(2)
j ≥ λ

(3)
j+1, and λ

(3)
j ≥ λ

(1)
j+3.

For example, Λ = ((4, 4, 3, 2, 2, 1), (5, 4, 3, 2, 2), (3, 2, 1, 1)) works.

...

4 4 3 2 2 1

5 4 3 2 2

3 2 1 1

4 4 3 2 2 1

5 4 3 2 2
...
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Cylindric partitions

A simple bijection

Proposition

For any composition c = (c1, . . . , ck−1, ck), the set of cylindric partitions
with profile c is in bijection the set of cylindric partitions with profile
c ′ = (ck , c1, . . . , ck−1).

c = (3, 1, 1):

...

4 4 3 2 2 1

5 4 3 2 2

3 2 1 1

4 4 3 2 2 1

5 4 3 2 2
...
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Cylindric partitions

Generating function

Theorem (Borodin 2007)

Let k and ` be positive integers, and let c = (c1, c2, . . . , ck) be a
composition of `. Define t := k + `.
Let Fc(z , q) :=

∑
Λ∈Pc

zmax (Λ)q|Λ| be the generating function for cylindric
partitions with profile c . We have:

Fc(1, q) =
1

(qt ; qt)∞

∏
�∈µ

1

(qh(�); qt)∞

∏
�∈µc

1

(qt−h(�); qt)∞
,

where µ is the partition (c1 + · · ·+ ck , . . . , c2 + c1, c1) and h(�) denotes
the hook length of the box �:

µ

µc

c1 c2 ck

k
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Cylindric partitions

Generating function for cylindric partitions with profile
c = (3, 1, 1)

Fc(1, q) =
1

(qt ; qt)∞

∏
�∈µ

1

(qh(�); qt)∞

∏
�∈µc

1

(qt−h(�); qt)∞
,

7 6 5 3 1

5 4 3 1

3 2 1 5

7

7

We have t = 5 + 3 = 8, and the generating function for cylindric partitions
with profile (3, 1, 1) is

F(3,1,1)(1, q) =
1

(q; q)∞
× 1

(q, q, q3, q3, q5, q5, q7, q7; q8)∞
.
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Cylindric partitions

A new symmetry

Theorem (Corteel–D.–Uncu 2020)

For any non-negative integers c1, c2, c3, we have

F(c1,c2,c3)(1, q) = F(c2,c1,c3)(1, q).

Proof:

c1 c2 c3 c1c2 c3

A

B

C

DE

F

c2 c2

(c1, c2, c3) (c2, c1, c3)

c2

{h(�)|� ∈ C} = {t − h(�)|� ∈ E} = {c2 + c3 + 3, . . . , c1 + c3 + 2},
{h(�)|� ∈ B} ∪ {t − h(�)|� ∈ A} = {h(�)|� ∈ F} ∪ {t − h(�)|� ∈ D}.
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q-difference equations from cylindric partitions

Outline

1 Integer partitions, Rogers–Ramanujan type identities and a bit of
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2 Cylindric partitions
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type identities
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q-difference equations from cylindric partitions

A general q-difference equation for cylindric partitions

Theorem (Corteel-Welsh 2019)

Let c = (c1, . . . , ck) and use the convention that c0 = ck . Denote by Ic
the set of indices j ∈ {1, . . . , k} such that cj > 0. Given a subset J of Ic ,
the composition c(J) = (c1(J), . . . , ck(J)) is defined by:

ci (J) :=


ci − 1 if i ∈ J and i − 1 /∈ J,

ci + 1 if i /∈ J and i − 1 ∈ J,

ci otherwise.

Then

Fc(z , q) =
∑
∅⊂J⊆Ic

(−1)|J|−1Fc(J)(zq|J|, q)

(1− zq|J|)
,

with the initial conditions Fc(0, q) = Fc(z , 0) = 1.
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q-difference equations from cylindric partitions

Example of profiles (3, 0) and (2, 1)

F(3,0)(z , q) =
1

1− zq
F(2,1)(zq, q)

Proof:

...

m n

n′

m n

n′
...

(3, 0)

...

· n

n′

· n

n′
...

(2, 1)

m = max(n, n′) + k , k ∈ N.
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q-difference equations from cylindric partitions

Example of profiles (3, 0) and (2, 1)

F(2,1)(z , q) =
1

1− zq
F(2,1)(zq, q)+

1

1− zq
F(3,0)(zq, q)− 1

1− zq2
F(2,1)(zq2, q)

Proof: Case 1: n ≥ n′

...

n n′′

n′

n n′′

n′
...

(2, 1)

...

· n′′

n′

· n′′

n′
...

(2, 1)

n = max(n′, n′′) + k , k ∈ N.
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q-difference equations from cylindric partitions

Example of profiles (3, 0) and (2, 1)
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1
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F(2,1)(zq, q)+

1

1− zq
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1− zq2
F(2,1)(zq2, q)

Proof: Case 2: n′ ≥ n

...

n

n′

n

n′
...

(2, 1)

...

n

·
n

·
...

(3, 0)

n′ = n + k , k ∈ N.
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q-difference equations from cylindric partitions

Example of profiles (3, 0) and (2, 1)
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1− zq
F(2,1)(zq, q)+

1

1− zq
F(3,0)(zq, q)− 1

1− zq2
F(2,1)(zq2, q)

Proof: Case 3: n′ = n (already counted twice!)

...

n n′′

n′ n′′′

n n′′

n′ n′′′
...

(2, 1)

...

· n′′

· n′′′

· n′′

· n′′′
...

(2, 1)

n′ = n = max(n′′, n′′′) + k , k ∈ N.
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q-difference equations from cylindric partitions

Reproving the Rogers–Ramanujan identities

For any composition c , let

Gc(z , q) := (zq; q)∞Fc(z , q).

From Borodin:

G(3,0)(1, q) =
1

(q2, q3; q5)∞
,

G(2,1)(1, q) =
1

(q, q4; q5)∞
.

From Corteel-Welsh:

G(3,0)(z , q) = G(2,1)(zq, q),

G(2,1)(z , q) = G(3,0)(zq, q) + G(2,1)(zq, q)− (1− zq)G(2,1)(zq2, q).

Let us solve this system of q-difference equations!
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q-difference equations from cylindric partitions

Reproving the Rogers–Ramanujan identities

G(3,0)(z , q) = G(2,1)(zq, q), (1)

G(2,1)(z , q) = G(3,0)(zq, q) + G(2,1)(zq, q)− (1− zq)G(2,1)(zq2, q), (2)

with the initial conditions Gc(0, q) = Gc(z , 0) = 1.

Substituting (1) into (2), we obtain

G(2,1)(z , q) = G(2,1)(zq, q) + zqG(2,1)(zq2, q).

Writing G(2,1)(z , q) =
∑

n≥0 an(q)zn, then a0(q) = 1 and

an = an(q)qn + an−1(q)q2n−1.

Iterating, we obtain

an(q) =
q2n−1

1− qn
an−1(q) =

qn
2

(q; q)n
.
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q-difference equations from cylindric partitions

Reproving the Rogers–Ramanujan identities
We obtain

G(2,1)(z , q) =
∑
n≥0

qn
2

(q; q)n
zn,

and by (1),

G(3,0)(z , q) =
∑
n≥0

qn
2+n

(q; q)n
zn.

Using the product formulas of Borodin, we recover the two
Rogers–Ramanujan identities:

G(2,1)(1, q) =
∑
n≥0

qn
2

(q; q)n
=

1

(q, q4; q5)∞
,

G(3,0)(1, q) =
∑
n≥0

qn
2+n

(q; q)n
=

1

(q2, q3; q5)∞
.
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q-difference equations from cylindric partitions

Cylindric partitions and the Andrews–Gordon identities

Let r ≥ 2 and 1 ≤ i ≤ r be two integers. We have

∑
n1≥···≥nr−1≥0

qn
2
1+···+n2

r−1+ni+···+nr−1

(q; q)n1

[
n1

n1 − n2

]
q

· · ·
[

nr−2

nr−2 − nr−1

]
q

=
(q2r+1, qi , q2r−i+1; q2r+1)∞

(q; q)∞
.

Using cylindric partitions with profile c = (2r − i , i − 1) and certain types
of lattice paths, Foda and Welsh (2016) reproved this identity.
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q-difference equations from cylindric partitions

Back to representation theory

We saw that the Rogers–Ramanujan and Andrews–Gordon identities are
related to characters of the Lie algebra A1.

The Wn algebra is an An−1 generalisation of the famous Virasoro algebra.

In 1999, Andrews, Schilling and Warnaar developed a so-called “A2 Bailey
lemma” and used it to study an infinite family of characters of W3. A
particular case is the following:

ch = (q, q)∞
∑

a1,b1,a2,b2∈Z

qa
2
1+b2

1+a2
2+b2

2−a1b1+a2b2+a1+a2+b1+b2

(q; q)a1−a2(q; q)b1−b2(q; q)a2(q; q)b2(q; q)a2+b2+1

=
1

(q2, q3, q3, q4, q4, q5, q5, q6; q8)∞

Problem: the sum does not have obviously positive coefficients.
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q-difference equations from cylindric partitions

Back to representation theory

In four particular cases, Andrews, Schilling and Warnaar were able to
rewrite the sum so that it has obviously positive coefficients. The
corresponding identities are called A2 Rogers–Ramanujan identities.

An A2 Rogers–Ramanujan identity (Andrews–Schilling–Warnaar 1999)∑
n1,n2≥0

qn
2
1+n2

2−n1n2

(q; q)n1

[
2n1

n2

]
q

=
1

(q, q, q3, q4, q6, q6; q7)∞
.

In 2019, Corteel and Welsh reproved the four identities of
Andrews–Schilling–Warnaar; together with a fifth one, by studying all
cylindric partitions with profiles c = (c1, c2, c3) with c1 + c2 + c3 = 4.

Natural next step: profiles c = (c1, c2, c3) with c1 + c2 + c3 = 5.
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q-difference equations from cylindric partitions

Back to representation theory

In four particular cases, Andrews, Schilling and Warnaar were able to
rewrite the sum so that it has obviously positive coefficients. The
corresponding identities are called A2 Rogers–Ramanujan identities.

An A2 Rogers–Ramanujan identity (Andrews–Schilling–Warnaar 1999)∑
n1,n2≥0

qn
2
1+n2

2−n1n2

(q; q)n1

[
2n1

n2

]
q

=
1

(q, q, q3, q4, q6, q6; q7)∞
.

In 2019, Corteel and Welsh reproved the four identities of
Andrews–Schilling–Warnaar; together with a fifth one, by studying all
cylindric partitions with profiles c = (c1, c2, c3) with c1 + c2 + c3 = 4.

Natural next step: profiles c = (c1, c2, c3) with c1 + c2 + c3 = 5.

Jehanne Dousse (CNRS) Cylindric partitions Journées Combiné 29 / 36



q-difference equations from cylindric partitions

Cylindric partitions with profiles c = (c1, c2, c3) with
c1 + c2 + c3 = 5
By Borodin’s theorem and the symmetries previously mentioned, the
exhaustive list of generating functions for partitions with profiles
c = (c1, c2, c3) with c1 + c2 + c3 = 5 is:

G(5,0,0)(1, q) =
1

(q2, q3, q3, q4, q4, q5, q5, q6; q8)∞
,

G(4,1,0)(1, q) = G(4,0,1)(1, q) =
1

(q, q2, q3, q4, q4, q5, q6, q7; q8)∞
,

G(3,0,2)(1, q) = G(3,2,0)(1, q) =
1

(q, q2, q2, q3, q5, q6, q6, q7; q8)∞
,

G(3,1,1)(1, q) =
1

(q, q, q3, q3, q5, q5, q7, q7; q8)∞
,

G(2,2,1)(1, q) =
1

(q, q, q2, q4, q4, q6, q7, q7; q8)∞
.
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q-difference equations from cylindric partitions

Cylindric partitions with profiles c = (c1, c2, c3) with
c1 + c2 + c3 = 5
By Corteel-Welsh, we obtain a system a q-difference equations for these
generating functions:

G(5,0,0)(z , q) = G(4,1,0)(zq, q),

G(4,1,0)(z , q) = G(4,0,1)(zq, q) + G(3,2,0)(zq, q)− (1− zq)G(3,1,1)(zq
2, q),

G(4,0,1)(z , q) = G(5,0,0)(zq, q) + G(3,1,1)(zq, q)− (1− zq)G(4,1,0)(zq
2, q),

G(3,2,0)(z , q) = G(3,1,1)(zq, q) + G(3,0,2)(zq, q)− (1− zq)G(2,2,1)(zq
2, q),

G(3,1,1)(z , q) = G(4,1,0)(zq, q) + G(3,0,2)(zq, q) + G(2,2,1)(zq, q)

− (1− zq)
(
G(4,0,1)(zq

2, q) + G(3,2,0)(zq
2, q) + G(2,2,1)(zq

2, q)
)

+ (1− zq)(1− zq2)G(3,1,1)(zq
3, q),

G(3,0,2)(z , q) = G(4,0,1)(zq, q) + G(2,2,1)(zq, q)− (1− zq)G(3,1,1)(zq
2, q),

G(2,2,1)(z , q) = G(3,2,0)(zq, q) + G(3,1,1)(zq, q) + G(2,2,1)(zq, q)

− (1− zq)
(
G(3,1,1)(zq

2, q) + G(3,0,2)(zq
2, q) + G(2,2,1)(zq

2, q)
)

+ (1− zq)(1− zq2)G(2,2,1)(zq
3, q).
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q-difference equations from cylindric partitions

Cylindric partitions with profiles c = (c1, c2, c3) with
c1 + c2 + c3 = 5

Writing, for all c ,

Gc(z , q) =
∑
k≥0

gc(k)zk ,

we transform these q-difference equations into a system of recurrences on
the (gc(k)). For example:

g(4,1,0)(k) = qkg(4,0,1)(k)+qkg(3,2,0)(k)−q2kg(3,1,1)(k)+q2k−1g(3,1,1)(k−1).

Then we use Gröbner bases calculations, performed automatically in the
HolonomicFunctions package (Koutschan 2009), to uncouple this
system of recurrences and obtain a single (much longer) recurrence
satisfied by each of the sequences (gc(k)).

These equations are hard to solve, but we had conjectures for the
solutions.
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q-difference equations from cylindric partitions

Cylindric partitions with profiles c = (c1, c2, c3) with
c1 + c2 + c3 = 5

Example of conjecture:

g(4,1,0)(k) =
∑

n2,n3,n4≥0

qk
2+n2

2+n2
3+n2

4+n2+n3+n4−kn2+n2n4

(q; q)k

[
k

n2

]
q

[
k

n4

]
q

[
n2

n3

]
q

.

Using Zeilberger’s creative telescoping algorithm, it is possible to find a
recurrence satisfied by our conjecture, and show that it is the same as on
the previous slide.

The only remaining thing to do is check that the initial conditions are also
equal.
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q-difference equations from cylindric partitions

The generating functions as sums with obviously positive
coefficients

G(5,0,0)(z, q) =
∑

n1,n2,n3,n4≥0

zn1 qn
2
1+n2

2+n2
3+n2

4+n1+n2+n3+n4−n1n2+n2n4

(q; q)n1

[
n1

n2

]
q

[
n1

n4

]
q

[
n2

n3

]
q

,

G(4,1,0)(z, q) =
∑

n1,n2,n3,n4≥0

zn1 qn
2
1+n2

2+n2
3+n2

4+n2+n3+n4−n1n2+n2n4

(q; q)n1

[
n1

n2

]
q

[
n1

n4

]
q

[
n2

n3

]
q

,

G(4,0,1)(z, q) =
∑

n1,n2,n3,n4≥0

zn1 qn
2
1+n2

2+n2
3+n2

4+n1+n3−n1n2+n2n4
(

1 + zqn1+n2+n4+1
)

(q; q)n1

[
n1

n2

]
q

[
n1

n4

]
q

[
n2

n3

]
q

G(3,0,2)(z, q) =
∑

n1,n2,n3,n4≥0

zn1 qn
2
1+n2

2+n2
3+n2

4+n1−n1n2+n2n4
(

1 + zqn1+n3+1 + zq2n1+n2+n3+n4+2
)

(q; q)n1

[
n1

n2

]
q

[
n1

n4

]
q

[
n2

n3

]
q

,

G(3,2,0)(z, q) =
∑

n1,n2,n3,n4≥0

zn1 qn
2
1+n2

2+n2
3+n2

4+n1−n1n2+n2n4
(
qn3 + zqn1+1 + zq2n1+n3+2 + zq3n1+n2+n3+n4+3

)
(q; q)n1

[
n1

n2

]
q

[
n1

n4

]
q

[
n2

n3

]
q

,

G(3,1,1)(z, q) =
∑

n1,n2,n3,n4≥0

zn1 qn
2
1+n2

2+n2
3+n2

4+n3−n1n2+n2n4

(q; q)n1

[
n1

n2

]
q

[
n1

n4

]
q

[
n2

n3

]
q

,

G(2,2,1)(z, q) =
∑

n1,n2,n3,n4≥0

zn1 qn
2
1+n2

2+n2
3+n2

4−n1n2+n2n4

(q; q)n1

[
n1

n2

]
q

[
n1

n4

]
q

[
n2

n3

]
q

.
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q-difference equations from cylindric partitions

Our new A2 Rogers–Ramanujan identities

Theorem (Corteel–D.–Uncu 2020)

We have

∑
n1,n2,n3,n4≥0

qn
2
1+n2

2+n2
3+n2

4+n1+n2+n3+n4−n1n2+n2n4

(q; q)n1

[
n1

n2

]
q

[
n1

n4

]
q

[
n2

n3

]
q

=
1

(q2, q3, q3, q4, q4, q5, q5, q6; q8)∞
,

∑
n1,n2,n3,n4≥0

qn
2
1+n2

2+n2
3+n2

4+n2+n3+n4−n1n2+n2n4

(q; q)n1

[
n1

n2

]
q

[
n1

n4

]
q

[
n2

n3

]
q

=
1

(q, q2, q3, q4, q4, q5, q6, q7; q8)∞
,

∑
n1,n2,n3,n4≥0

qn
2
1+n2

2+n2
3+n2

4+n3−n1n2+n2n4

(q; q)n1

[
n1

n2

]
q

[
n1

n4

]
q

[
n2

n3

]
q

=
1

(q, q, q3, q3, q5, q5, q7, q7; q8)∞
,

∑
n1,n2,n3,n4≥0

qn
2
1+n2

2+n2
3+n2

4−n1n2+n2n4

(q; q)n1

[
n1

n2

]
q

[
n1

n4

]
q

[
n2

n3

]
q

=
1

(q, q, q2, q4, q4, q6, q7, q7; q8)∞
.
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What next?
The following profiles are now well understood:

all profiles of length 2 (Andrews–Gordon identities)

all profiles of length 3 and sum 2 (Rogers–Ramanujan identities)

all profiles of length 3 and sum 4 (Andrews–Schilling–Warnaar’s A2

Rogers–Ramanujan identities mod 7)

all profiles of length 3 and sum 5 (our new A2 Rogers–Ramanujan
identities mod 8).

We need to understand more profiles:

Warnaar 2021: A2 Andrews–Gordon identities, conjectures about the
shape of the generating function for cylindric partitions of all profiles
of length 3 and sum not divisible by 3

profiles of length 3 and sum divisible by 3 seems to be the most
difficult

profiles with length > 3: still out of reach at the moment, but could
lead to An−1 Rogers–Ramanujan identities
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Thank you very much!
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